SKT 600

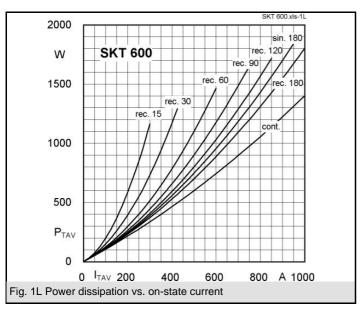
Capsule Thyristor

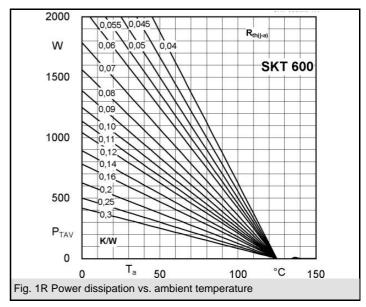
Line Thyristor

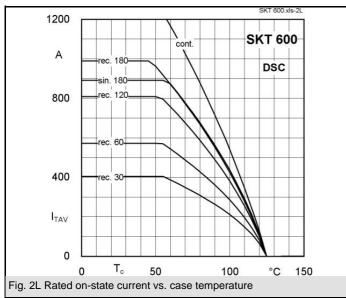
SKT 600

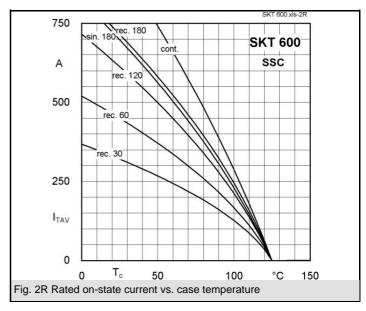
Features

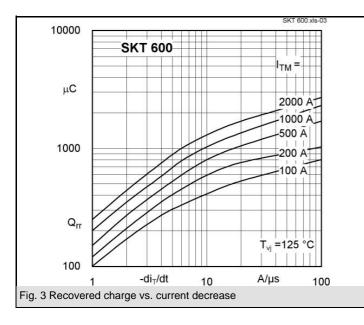
- Hermetic metal case with ceramic insulator
- Capsule package for double sided cooling
- Shallow design with single sided cooling
- · International standard case
- Off-state and reverse voltages up to 1800 V
- Amplifying gate

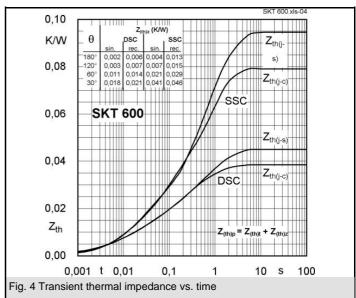

Typical Applications

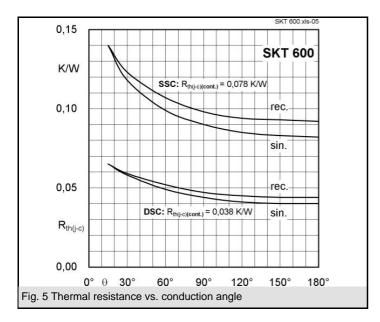

- DC motor control (e. g. for machine tools)
- Controlled rectifiers (e. g. for battery charging)
- AC controllers
 - (e. g. for temperature control)
- Recommended snubber network e. g. for $V_{VRMS} \le 400 \text{ V}$: R = 33 $\Omega/32$ W, C = 1 μF

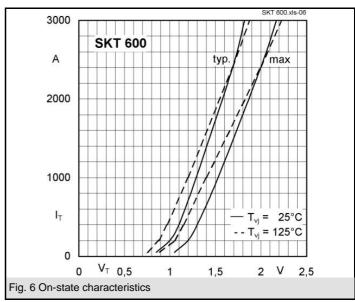

V_{RSM}	V _{RRM} , V _{DRM}	I _{TRMS} = 1400 A (maximum value for continuous operation)		
V	V	I_{TAV} = 600 A (sin. 180; DSC; T_c = 86 °C)		
900	800	SKT 600/08D		
1300	1200	SKT 600/12E		
1500	1400	SKT 600/14E		
1700	1600	SKT 600/16E		
1900	1800	SKT 600/18E		

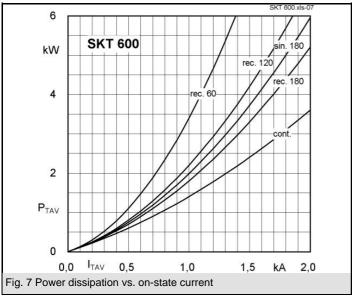

Symbol	Conditions	Values	Units
I _{TAV}	sin. 180; T _c = 100 (85) °C;	437 (620)	Α
I _D	2 x P8/180; T _a = 45 °C; B2 / B6	400 / 560	Α
	2 x P8/180 F; T _a = 35 °C; B2 / B6	1060 /1500	Α
I_{RMS}	2 x P8/180; T _a = 45 °C; W1C	440	Α
I _{TSM}	T _{vi} = 25 °C; 10 ms	11500	Α
	T _{vj} = 125 °C; 10 ms	10000	Α
i²t	T _{vj} = 25 °C; 8,3 10 ms	660000	A²s
	T _{vj} = 125 °C; 8,3 10 ms	500000	A²s
V _T	T _{vi} = 25 °C; I _T = 2400 A	max. 2	V
$V_{T(TO)}$	T _{vi} = 125 °C	max. 1	V
r _T	T _{vj} = 125 °C	max. 0,4	mΩ
$I_{DD}; I_{RD}$	T_{vj} = 125 °C; $V_{RD} = V_{RRM}$; $V_{DD} = V_{DRM}$	max. 80	mA
t _{gd}	$T_{vj} = 25 ^{\circ}\text{C}; I_{G} = 1 \text{A}; di_{G}/dt = 1 \text{A}/\mu\text{s}$	1	μs
t _{gr}	$V_{\rm D} = 0.67 * V_{\rm DRM}$	2	μs
(di/dt) _{cr}	T _{vi} = 125 °C	max. 125	A/µs
(dv/dt) _{cr}	T _{vj} = 125 °C ; SKTD / SKTE	max. 500 / 1000	V/µs
t_q	T _{vj} = 125 °C	100 200	μs
I _H	T_{vj} = 25 °C; typ. / max.	150 / 500	mA
I_L	T_{vj} = 25 °C; typ. / max.	500 / 2000	mA
V _{GT}	T_{vj} = 25 °C; d.c.	min. 3	V
I _{GT}	$T_{vj} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 200	mA
V_{GD}	$T_{vj} = 125 ^{\circ}\text{C}; \text{d.c.}$	max. 0,25	V
I_{GD}	T_{vj} = 125 °C; d.c.	max. 10	mA
R _{th(j-c)}	cont.; DSC	0,038	K/W
R _{th(j-c)}	sin. 180; DSC / SSC	0,04 / 0,082	K/W
R _{th(j-c)}	rec. 120; DSC / SSC	0,045 / 0,093	K/W
$R_{th(c-s)}$	DSC / SSC	0,007 / 0,014	K/W
T_{vj}		- 40 + 125	°C
T_{stg}		- 40 + 130	°C
V _{isol}		-	V~
F	mounting force	10 13	kN
а			m/s²
m	approx.	240	g
Case		B 10	

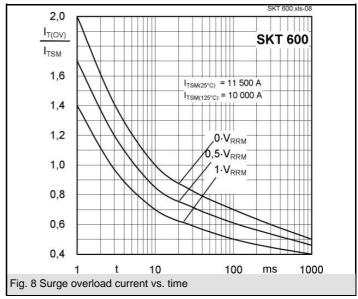


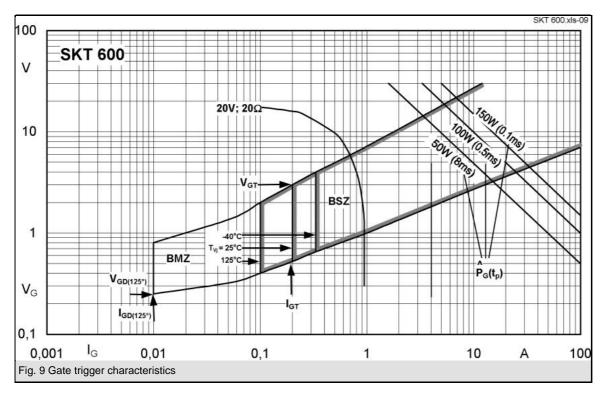


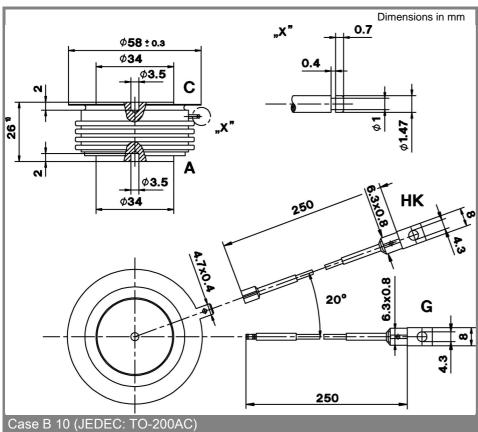









SKT 600



This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.