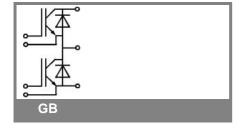
SKM 200GB128D

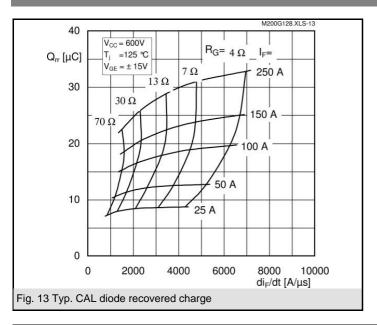
SPT IGBT Module

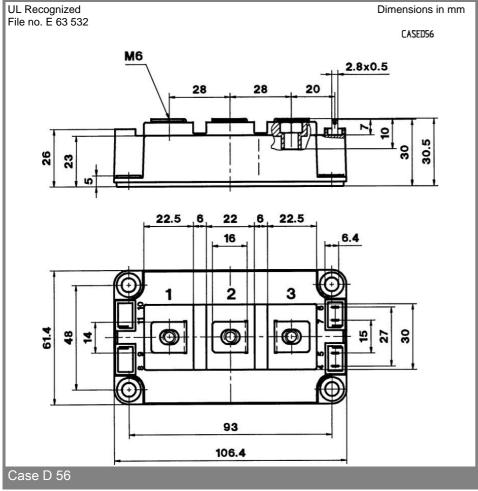
SKM 200GB128D

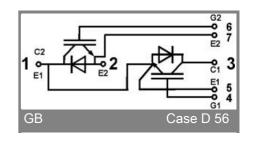
Features


- Homogeneous Si
- SPT = Soft-Punch-Through technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_c

Typical Applications


- AC inverter drives
- UPS
- Electronic welders f_{sw} up to 20kHz


Absolute	Maximum Ratings	T _c = 25 °C, unless otherwise	Γ _c = 25 °C, unless otherwise specified						
Symbol	Conditions	Values	Units						
IGBT									
V_{CES}		1200	V						
V _{CES}	$T_c = 25 (85) ^{\circ}C$	300 (220)	Α						
I _{CRM}	$T_c = 25 (85) ^{\circ}C$ $t_p = 1 \text{ ms}$	300	Α						
V_{GES}		± 20	V						
T_{vj} , (T_{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C						
V_{isol}	AC, 1 min.	4000	V						
Inverse diode									
I _F	T _c = 25 (80) °C	190 (130)	Α						
I _{FRM}	$t_p = 1 \text{ ms}$	300	Α						
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 150 ^{\circ}\text{C}$	1450	Α						


Characteristics		T _c = 25 °C, unless otherwise specified					
Symbol	Conditions	min.	typ.	max.	Units		
IGBT					•		
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 6 \text{ mA}$	4,5	5,5	6,45	V		
I _{CES}	$V_{GE} = 0, V_{CE} = V_{CES}, T_j = 25 (125) °C$		0,2	0,6	mA		
V _{CE(TO)}	T _j = 25 (125) °C		1 (0,9)	1,15 (1,05)	V		
r _{CE}	V _{GE} = 15 V, T _j = 25 (125) °C		6 (8)	8 (10)	mΩ		
V _{CE(sat)}	I _{Cnom} = 150 A, V _{GE} = 15 V, chip level		1,9 (2,1)	2,35 (2,55)	V		
C _{ies}	under following conditions		13		nF		
C _{oes}	$V_{GE} = 0, V_{CE} = 25 \text{ V}, f = 1 \text{ MHz}$		2		nF		
C _{res}			2		nF		
L _{CE}				20	nΗ		
R _{CC'+EE'}	res., terminal-chip T _c = 25 (125) °C		0,35 (0,5)		mΩ		
t _{d(on)}	V _{CC} = 600 V, I _{Cnom} = 150 A		125		ns		
t _r	$R_{Gon} = R_{Goff} = 7 \Omega, T_j = 125 °C$		50		ns		
t _{d(off)}	V _{GE} = ± 15 V		620		ns		
t _f			55		ns		
E _{on} (E _{off})			18 (15)		mJ		
Inverse diode							
$V_F = V_{EC}$	I_{Fnom} = 150 A; V_{GE} = 0 V; T_j = 25 (125)		2 (1,8)	2,5	V		
$V_{(TO)}$	T _i = 25 (125) °C		1,1	1,2	V		
r _T	T _j = 25 (125) °C		6	8,7	mΩ		
I _{RRM}	I _{Fnom} = 150 A; T _j = 125 () °C		190		Α		
Q_{rr}	di/dt = 4800 A/µs		24		μC		
E _{rr}	V _{GE} = 0 V		8		mJ		
Thermal characteristics							
R _{th(j-c)}	per IGBT			0,095	K/W		
R _{th(j-c)D}	per Inverse Diode			0,25	K/W		
R _{th(c-s)}	per module			0,038	K/W		
Mechanical data							
M_s	to heatsink M6	3		5	Nm		
M_t	to terminals M6	2,5		5	Nm		
w				325	g		

SKM 200GB128D

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.