SK 70 WT

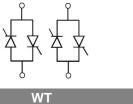
SEMITOP[®]3

Antiparallel Thyristor Module

SK 70 WT

Preliminary Data

Features


- Compact Design
- One screw mounting
- Heat transfer and isolation trough direct copper bonded aluminium oxide ceramic (DCB)
- Glass passived thyristor chips
- Up to 1600V reverse voltage
- UL recognized, file no. E 63 532

Typical Applications

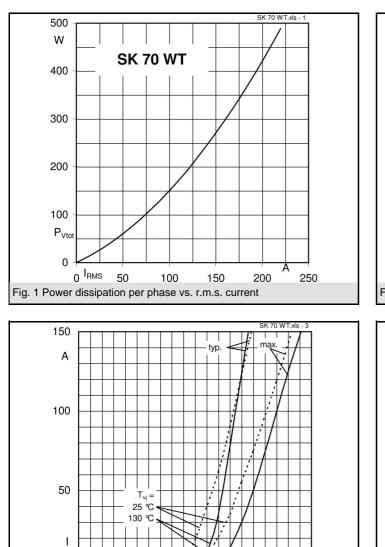
- Soft starters
- Light control (studios, theaters...) •
- Temperature control

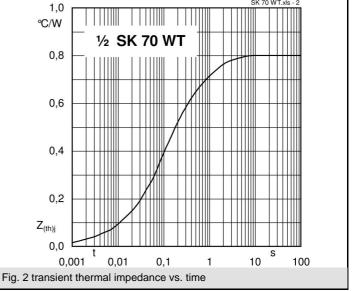
V _{RSM}	Л	V _{RRM} , V _{DRM}	I _{RMS} = 72 A (full conduction)	
V		V	(T _s = 85 °C)	
900 1300 1700		800 1200 1600	SK 70 WT 08	
			SK 70 WT 12	
			SK 70 WT 16	
Symbol	Cor	nditions	Values	Units
I _{RMS}	W1C	; sin. 180° ; T _s =100°C	50	А
	W1C	; sin. 180° ; T _s =85°C	72	А
I _{TSM}	T _{vi} =	25 °C ; 10 ms	1000	А
		125 °C ; 10 ms	900	А
i²t		25 °C ; 8,3 10 ms	5000	A²s
	T _{vj} =	125 °C ; 8,3 10 ms	4000	A²s
V _T	T _{vi} =	25 °C, I _T = 120 A	max. 1,8	V
V _{T(TO)}		125 °C	max. 1	V
r _T	$T_{vi} =$	125 °C	max. 6	mΩ
I _{DD} ;I _{RD}	$T_{vj} =$	25 °C, V _{RD} =V _{RRM}	max. 0,5	mA
			mov 15	

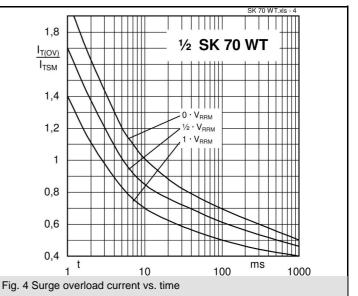
V _{T(TO)}	T _{vi} = 125 °C	max. 1	V
r _T	T _{vj} = 125 °C	max. 6	mΩ
I _{DD} ;I _{RD}	$T_{vj} = 25 \text{ °C}, V_{RD} = V_{RRM}$	max. 0,5	mA
	$T_{vj} = 125 \text{ °C}, V_{RD} = V_{RRM}$	max. 15	mA
t _{gd}	T _{vj} = 25 °C, I _G = 1 A; di _G /dt= 1 A/μs	1	μs
t _{gr}	$V_{\rm D} = 0.67 \ ^{*}V_{\rm DRM}$	2	μs
(dv/dt) _{cr}	T _{vi} = 125 °C	1000	V/µs
(di/dt) _{cr}	T _{vi} = 125 °C; f= 50 60 Hz	50	A/µs
t _q	T _{vi} = 125 °C; typ.	80	μs
I _H	T _{vj} = 25 °C; typ. / max.	100 / 200	mA
I _L	T_{vj} = 25 °C; R_{G} = 33 Ω; typ. / max.	200 / 400	mA
V _{GT}	T _{vi} = 25 °C; d.c.	min. 2	V
I _{GT}	T _{vi} = 25 °C; d.c.	min. 100	mA
V _{GD}	T _{vj} = 125 °C; d.c.	max. 0,25	V
I _{GD}	T _{vj} = 125 °C; d.c.	max. 5	mA
R _{th(j-s)}	cont. per thyristor	0,8	K/W
- 6 - /	sin 180° per thyristor	0,84	K/W
R _{th(j-s)}	cont. per W1C	0,4	K/W
<i>。</i> ,	sin 180° per W1C	0,42	K/W
T _{vi}		-40 +125	°C
T _{stg}		-40 +125	°C
T _{solder}	terminals, 10 s	260	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3000 / 2500	V~
M _s		2,5	Nm
M _t			Nm
а			m/s²
m		30	g
Case	SEMITOP [®] 3	Т 63	

SK 70 WT

0

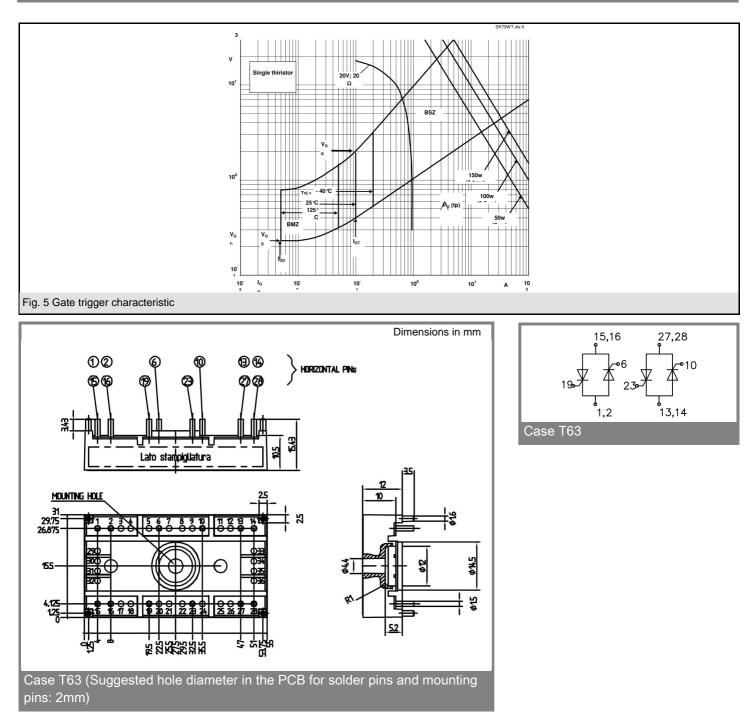

0


Fig. 3 On-state characteristic


٧

0,5

1



٧

2

1,5

SK 70 WT

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.